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Three expansion methods are described using Chebyshev polyno-
mials of the first kind for solving the integral form of the equation
of radiative transfer in an isotropically scattering, absorbing, and
emitting plane-parallel medium. With the aid of symbolic computa-
tion, the unknown expansion coefficients associated with this choice
of hasis functions are shown to permit analytic resolution. A unified
and systematic solution treatment is offered using the projection
mathads of collocation, Ritz-Galerkin, and weighted-Galerkin, Nu-
marical results are presented contrasting the three expansion meth-
ods and comparing them with existing benchmark results. New
theoretical results are presented ilfustrating rigorous error bounds,
residual characteristics, accuracy, and convergence rates. © 1995
Academic Press, Inc.

I. INTRODUCTION

In radiative |1, 2} and neutron [3) wansport theories, utiliza-
tion of the equivalent integral form of the Boltzmann transport
equation has often been called upon when considering highly
anisolropic scatiering in cither a plunc-paraltel {4, 5] or spheri-
cal medium [6]. Peierl’s equation produces (i) a reduction in
dimensionality leading to a pure (smoothing} integral form, and
(ii) a direct relation with several key physical quantities of
interest [4, 5}. Unfortunately, the equivalent integral form also
leads to a system of weakly singular Fredholm integral equa-
tions of the second kind. The appearance of the lirst exponential
integral function, as a kernel function, inlroduces a logarithmic
singularity as its arguinent vanishes.

Recently, Frankel [4] alluded to the natural implementation
of symbolic computation 1o ihe integral Torm ol the transport
cquation. Unlorunately, no symbolic implemenlation wis actu-
ally performed. Indeed, only a crude numeric solution, based
on singularity subtraction {7-9] and trapezoidal integration
[10], was used. It is intercsting {o note that accurate results
still resulted.

Owing to a lack of satisfaclory closure on several fronts
14], this paper addresses three particular issues not previously
resolved. In order to illustrate several fundamental points, this
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study focuses on radiative transport in an isotropically scatlering
plane-parallel medium, Extension to the general anisotropic
scattering case will be evident. Thus, the purpose of the present
exposition is threefold: (i) to develop three expansion methods
which make use of Chebyshev polynomials of the first kind as
the set of orthogonal basis lunctions; (i1) to implement and
dewonstrate the wtility of symbolic computation, such as offered
by the packages Mathematica™ and Maple, for augmenting the
solution methodology; and (iii) to present some informative
residual/error and convergence analyses which are intended to
indicate performance and accuracy of the methods.

This paper is divided into three major sections. In Section
2, we formulate the problem of interest. In Section 3, we intro-
duce a series representation for the zeroth Legendre moment
of the intcnsity and develop the three solution methods lor
finding the unknown expansion coefficients. In Section 4, we
present results and discuss the merit of the proposed approach.

2. FORMULATION

In this section, we present the necessary formulation of the
equalions governing the zeroth Legendre moment of the radia-
tive intensity in a plane-parallel, isotropically scattering, ab-
sorbing, and emilting medium. The transformation from the
integrodifferential form of the equation of radiative transfer to
the pure integral form can be found in the fine expositions by
Ozisik [1] and Duderstadt and Martin |3].

2.1. Peierl’s Equation

We begin by considering the integral Torm ol the transport
cquation {1, 3, 4], namely.

G =pm +5 [ Keln - )G@ae ne(-1.11
(2.1a)

where G(m) is the zeroth Legendre moment of the radiative
intensity, defined as [4]

G(py=2m . O w)dp, me [—L 11 (2.1b)
==
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Here /(n, w) is the radiation intensity, K(ce|n — &) is the
kernel which is explicitly given as

K(a|n— &) = Eda| n— £, (2.1c)

where the exponential integral function is given as [11, p. 228]

B = e, a0, 2.1d)

and where 7 is the optical variable and w is the cosine of the
angle between the positive n-direction and the direction of the
beam, The optical thickness and single scattering albedo are
denoted by L and w, respectively. Here the two real parameters
seen in Eq. (2. 1a) are expressible in terms of the single scattering
albedo and optical thickness as « = L/2 and A = wa. The
forcing function, f*(n) contains the imposed boundary con-
straints in terms of surface intensities and/or internal sources.
For purpose of demonstration, we will consider a classical
problem (similar to the slab albedo problem in neutron trans-
port), where numerous citations exist. Thus, we will assume
that no internal sources are present and that transparent surfaces
are present at both n = —1 and 5 = 1. Further, we assume
that the front surface at 4 = —1 is irradiated by an externally
symmetric source while the back surface at n = | is free of
any external source. Thus, the forcing function reduces to the
nonsingular form

fim) =2mEfa(l + m), n&l-LIL 2.2)

Equation {2.1a) represents a linear, weakly singular Fredholm
integral equation of the second kind. The weakly singular kernel
displayed in Eq. (2.1c) is quadratically integrable [12] in the
square n € [—1, 1] and £ € [—1, 1], and it is also symmetric.
Purely numeric solutions [13, 14] and approximate analytic
solutions | 15-22] have been presented in the literature, Analytic
approaches have typically been based on expansion methods.
Legendre polynomials [18, 19] and simple monomials [20-22]
have been popular choices for the basis function.

2.2. Physical Quantifies

Following the notation of Thynell and Ozisik [5] and Frankel
[4], we can define two important surface properties. Using the
definitions presented in [4], one can express the refectivity, R, as

A
R=2-['  GoEa( +n)dn (2.3)

and transmissivity, T, as

A -
T=2EQ + o[ GOpEga(l = mdn. (24
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These properties (and/or exiting surface heat fluxes) are often
used as the sole basis for demonstrating accuracy.

3. ANALYSIS

Traditional expansion methods for solving the integral form
of the transport equation have used Legendre polynomials [18,
19] and monomiais [20-22] as the basis functions. Spiga and
his coworkers [23-26] developed numerical solutions using a
Galerkin methodology, which is a projection method, for solv-
ing an integral form of the one-dimensicnal transport equation
in the presence of different types of scattering phase functions.
It should be remarked that projection methods include orthog-
onal collocation, Ritz—Galerkin, weighted-Galerkin, and least-
squares methods. Both Chebyshev polynomials of the first kind
[24] and Legendre polynomials of the first kind {23, 25, 26] were
used as the basis functions in their expansions. Unfortunately,
neither rigorous error estimates nor the theoretical establish-
ment of the convergence rate were presented. The authors re-
marked that good rates of convergence were established based
on numerical evidence. It should also be noted that Kamiuto
[27] developed a Chebyshey collocation solution for the spheri-
cal harmonics approximation. Again, no error or convergence
analysis was provided. [n the present work, a general projection
framework is established using the residual function from which
a particular projectton method can be derived.

3.1. Chebyshev Expansions

Assume that our real-valued function G(%) can be expressed
in the form

Gin) = ;a:srm(n), n€-1,1], (3.1

where {T,(1)}mo are the Chebyshev polynomials of the first
kind [28] and follow several well-known relations {11]. The
Chebyshev polynomials are defined as

To{n) = cos[mlcos 'y, m=0,1,..,

where |T,(n)| = 1 for m = 0. Here the coefficients {a}};_, are
to be determined by some practical means. It is well known
(28, 291 that {T,(m} ==, form an orthogonal sequence of func-
tions with respect to the weight function V1 — 1¢. Thus, when
implementing an expansion method, the main goal lies in de-
termining the unknown expansion coefficients {a}o-s. Cheby-
shev polynomials have several exploitable features [11, 28, 29]
and have been the topic of much research and interest with
regard to spectral methods [30], boundary value problems [31],
nonsingular integral equations [32], and the solution of Cauchy
singular integral and integrodifferential equations [33-40].

In general, we seek an approximate solution to G(n) by
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truncating the infinite series displayed in Eq. (3.1) at a certain
order N, namely

N
Gol(m) = 2 anTu(m), M E[- 111, (3:2)

where af is an approximation to a for each fixed m. Thus, we
may express Eq. (2.1a) as

Ru(m) = Gal) — () — % !

_ Eain— §HGu(E) dE,
=-1 (33)

nel-1,11, A>0, a=0,
where we have introduced the local residual function, Ry(n).
Unless the true solution is a linear combination of
{T.(m} =y, we cannot choose {a}%_, to make Ry(7) vanish for
all y € [—1, 1]. However, suitable expansion coefficients can
be obtained by making the residual Ry(7) small in some sense.
Let us define the inner product of two real functions g,{r)
and g,(r) as

(g = [ wiDg(Dg:0) (3.42)
and the corresponding norm as
! 2
e, = /[ wingio ar (3.4b)

where w,(f) is a non-negative, real, and integrable weight
function.

A particular expansion method is defined by any restrictions
imposed on the residual function displayed in Eq. (3.3). Our
aim is to determine the unknown expansion coefficients
{a%}¥_, in such a manner that some measure of Ry{) is small.
A systematic way of expressing this is to require that the orthog-
onality condition

Ry(m), Vi), =0, k=0,1,..,N, (3.5)

be enforced for k = 0, 1, ..., N. In other words, we will require
that the residual Ry (1) be orthogonal to the first (N + 1) W ()
functions with respect to the weight function w; ().

Let the local error in the approximation be defined as

Enlm) = G(n) — Gul(m), (3.6)

and its size may be measured by means of some functional
norm. Unfortunately, the error is as inaccessible as the exact
solution. However, the residual Ry{%)} is a computable measure
of how well Gy(7) is to G(n). One can develop a corresponding
weakly singular Fredholm integral equation of the second kind
for the error €,{(7) in terms of the residual Ry(7), namely

JAY 1. FRANKEL

Ru(m) = ~8yim + 5 [ Kialn - 80 dé,
- (3.1
ne[-1,1l.

Defining the pth functional norm of Ry(7) as [Ry|,, and the
pth operator norm of % as ||}, then one may derive in symbolic
form the rigorous error bound [37]

[Ral,

[[Rul, Eull, =
R - S| ]|
1€l 1 — (W23,

L+ ), — 38
(when | — (A/2)||3([|, > 0). Note that ¥ denotes an integral
operator, such as defined by

W=, Kn £)s(&)de,

where K(n, £) is the kernel and g represents some unknown
function. This estimate will be discussed further in the next
section. It should be noted that we can obtain an analytic expres-
sion for the residual, Ry(1).

Substituting Eq. (3.2) into Eq. (3.3} yields

Ry(m) = Zoaﬁ [Tm(n) - %I:(n)] — f(m,

(3.9a)
ne[-1L1], A>0,
where
l d
r50m = [ Eeln~ €)T6) dt,
= (3.9b)
m=0,1,.,N, a=>0
or, explicitly,
« 'a En42,(0)T $(m)
m=2 ;0 —
+ z”‘: (= ])j+lE}+2(a(l'+T T P(—1)
= of (3.9¢)

_ 2"’: Ej(o(l — gNT A1)

& ait!

m=0,1,.,.N, a>0

where [m/2] denotes the integer resultant. Here, we denote the
kth spatial derivative on the mth Chebyshev polynomial as
TP(n).

Three methods for determining the expansion coefficients
{a®}_, are developed in accordance to the concept displayed
in Eq. (3.5). The three proposed methods use the weight and
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TABLE 1
Weights and Test Functions for the Three Expansion Methods

wi(m) Fi(m) Name of method
&n - m) 1 Collocation
1 Tdm Ritz-Galerkin
(1 — " Ti{m) Weighted-Galerkin

test functions indicated in Table 1. Formally proceeding and
requiring (Ry, W), = 0 for k = 0, 1, ..., N, we arrive at the
general expression

0= Zuaﬁ f;_l wi(m) W) [Tm(n) - %Iz(n)] d

-J

k=01, ..

3.10
| wel(my¥ () dn, G190

N, A=0, a>0.
This equation will be made use of throughout the present
analysis.

3.2. Collocation

Referring to Table I, the corresponding collocation method
requires that wi(n) = 8(n — n,) and ¥;(n) = 1. This implies
that the residual Ry(mn) be zero at (¥ + 1) discrete collocation
points defined by #,. Thus, we arrive at

N

A
> al [Tm(mvglm)] =fn), k=0,1,.,N, A>0,

m=0

(3.11)

where [2(n) is defined in Eq. (3.9¢). This provides (N + 1)
equations for determining (N + 1) unknown expansion coeffi-
cients. This approach is clearly simple to implement and compu-
tationally inexpensive in terms of operation count.

3.3, Ritz-Galerkin

Referring to Table I and using w, () = 1, Wi} = T(n),
and requiring that (Ry, ¥y, = 0fork =0, 1, ..., N, we arrive at

N
> ab (A,,,k - % c;k) =fs. k=0,1,.,N, (3.12a)
m=0

where

T.(mT(m) dn,

A = J;:_

m=0,1,..,N, k=0,1,...N, (3.12b)
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1
w= [l 1T dn,
m=0,1,.,N, k=0,1,..,N, (3.12¢)
1
fe=[ _ rariman,
k=0,1,.,N (3.12d)

Explicit expressions for these constants have been derived and
can be found in Appendix A. Thus, we are left with a system
of (N + 1) linear equations for the (N + 1) unknown expan-
sion coefficients.

3.4. Weighted-Galerkin

Some discussion i1s warranted with regard to this approach.
At first glance, it appears that several insurmountable obstacles
are present owing to the appearance of the singular weight
function displayed in Table [. We can quickly overcome these
apparent impediments by expressing the exponential integral
function E\{ee| % — £|) in terms of its standard series representa-
tion [11],

Edfa)n— &)= —log|n — ¢ —;bﬂn— &,

(3.13a)

where
=7y + log(a), (3.13h)
J=% i=12 .., (3.13¢)

where -y is Euler’s constant. We now express Eq. (3.9a) in the
explicit form

R(m) =2 a¥ [Tm(n) + % [l T 08l - ¢lat
m=0 ==l

= 1 , 3.14
%E | __,ln—élem(f)df] ey,

nel-1,1).

Forming the inner product in accordance to Eq. (3.5), we for-
mally arrive at

N

> ak [Nm +%(Amﬁn + B;n)} = 27VEN,,

(3.15)

n=0,1,.,.N, A>0,
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where A, is defined in Eq. (3.12b) and

B o

B2, = Eba Vs

>0,

— E|T,(£) dé dm,
(3.16)

In deriving Eq. (3.15), we made use of the following well-
known orthogonality condition associated with Chebyshev
polynomials of the first kind, namely [28]

0, m#n,
i m(n)Tn(n) . = =4
Ny = (3.17)
=l AT — o

*\{i:i
3
I
=
\%
]

where N, is the normalization integral. Additionally, we made
nse of

1 Tmlogln—¢
f,,z_, e dn = BI{E), (3.18a)
where
Bo=—mlog2, k=0, (3.18b)
B = nik, k=>0. (3.18¢)
Equation (3.183) can be derived from [11, 38]
U (&), k>0,
]( T, { -1(€) 3.19)
=V — Py — £) 0, k=10,

where [J;_(£) is the (¢ — 1)}th Chebyshev polynomial of the
second kind [28]. Here F represents integration in the Cauchy
principal value sense [39, 40].

In arriving at Eq. (3.15), we expanded the forcing function
Je(n) in terms of a Chebyshev series expansion, namely

fom = 2mExa(l + M) = 21 3 viTym). (3.20)

This series representation converges fairly rapidly. In Appendix
B, we develop the procedure for determining the expansion
coefficients, vy, j =0, 1, ...

Symbolic computation was called upon to integrate, in an
exact fashion, the double integral displayed in Eq. (3.16) for
B, m=0,1,..,Nn=01,.. N Manually, this intermediate
level compatation is rather tedious. Again, we are now in a
position of determining the expansion coefficients from a well-
behaved system of linear equations.
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4. RESULTS

In this section, we highlight some findings concerning the nature
of the Chebyshev polynomials of the first kind and make some
comparisons with previously reported results. The rationale for
choosing Chebyshev polynomiais of the first kind as the basis
functions are twofold, namely (i) to develop some new theoreti-
cal results and (i) to extend the results of Kamiuto’s results
[27] to the integral form of the transport equation, It should be
noted that Kamiuto presented only operational results and did
not discuss convergence or error estimates in his development
of the solution for the integro-differential form of the trans-
port equation.

The two parameter (@, L — A, @) problem posed here has
been previously considered by Lii and Ozisik [41]. The sym-
bolic computation software package Mathematica®™, imple-
mented on a NeXT Turbostation with 16 Mbytes of memory,
was used for developing the solutions and graphics (with excep-
tion to Fig. 2) presented here.

Using Eqs. (2.3) and (2.4) for R, T, respectively, and the
finite Chebyshev series representation for G(1) displayed in
Eq. (3.2), we find

R= 25 4l 3 — o (T9(DE(2) = TH(=DEaO)]
(4.1)
and
N mop I)n
T=2E2a) + 5 2 Z (T (1)E,.5(0)
w0 =0 (4.2)

= T3 DE,..(2a)].

It is interesting to note that most studies merely compare R
and T resuits to indicate accuracy. In light of this, we illustrate
the effectiveness of the simple collocation method previously
described using the Chebyshev polynomials of the first kind.
Table II indicates that the collocation approach produces accept-
able numerical results for R and T when compared with the
exact solution [}, 41] over a range of optical thicknesses and
single-scattering albedos. The collocation points were estab-
lished from a closed, Gauss-Chebyshev (Lobatto-Chebyshev}
[9] rule, ie., n = cos(mwk/N), k = 0, 1, ..., N. This closed rule
ensures that By(1) = Ry(—1) = 0.

Lii and Ozisik [41] also included exact and approximate
results when the optical thickness, L was 15 and 30 for the
cases where the single-scatter albedo approached unity. The
orthogonal collocation method outlined here proved to produce
excellent numerical results when compared to the exact results
reported in [41]. For example, when w = 0.995, L = 15 and
L = 30, the exact results for the reflectivity and transmissivity
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TABLE 1I

Comparison of the Present Collocation Results for R and T to the Exact Results [41] for Various Optical Thicknessess, L, and Albedos, @

L=05{N=T7 L=1N=T7 L=2(N=9) =5W=1D
Surface

] property Present Exact Present Exact Present Exact Present Exact
0.995 R 0.2932 0.2932 0.4412 0.4412 0.5988 0.5988 0.7636 0.7636
T 0.7018 0.7018 0.5488 0.5488 0.3815 0.3815 0.1892 0.1892

0.9 R 0.2475 0.2475 0.3527 0.3527 0.4372 0.4376 0.4764 0.4763
T 0.6599 0.6599 0.4747 0.4747 0.2656 0.2656 0.0534 0.0534

0.8 R 0.2056 0.2056 0.2802 0.2806 0.3280 0.3280 0.3417 0.3417
T 0.6220 0.6220 0.4162 0.4162 0.1973 0.1973 0.0229 0.0229

0.7 R 0.1690 0.1690 0.2221 0.2221 0.2506 0.2506 0.2566 0.2565
T 0.5891 (.5891 0.3712 0.3712 0.1551 0.1551 0.0124 0.0124

0.6 R 0.1365 0.1365 0.1743 0.1743 0.1919 0.1919 0.1948 0.1947
T 0.5603 0.5603 0.3356 0.3355 0.1269 0.1269 0.0077 0.0077

05 R 0.1077 0.1077 0.1342 0.1342 0.1451 0.1451 0.1466 0.1463
T .5350 0.5350 0.3067 0.3067 0.1071 0.1071 0.0053 0.0053

0.3 R 0.0584 0.0584 0.0701 0.0701 0.0741 0.0741 (L0745 0.0745
T 0.4924 0.4925 0.2631 (0.2631 0.0814 0.0814 0.0030 0.0030

0.1 R 0.0178 0.0178 (0.0208 0.0207 0.0216 0.0216 0.0217 0.0217
T 0.4580 0.4578 4.2319 0.2317 0.0659 0.0658 0.0021 0.0020

were reported [41] as R = (.8438, T = 0.0450 and R = 0.8497,
T = 0.0071, respectively. Correspondingly, Lii and Ozisik [41]
reported that their approximate solution produced R = 0.8429,
T = 0.0453 and R = 0.8489, T = 0.0070, respectively. The
orthogonal collocation method embodied here for the case
L =15 w = 0.995 produced R = 0.843896, T = 0.044943
(when N = 13) and R = 0.843853, T = 0.044956 (when
N =15). When L = 30, @ = 0.995, the present method pro-
duced R = 0.850151, T = 0.007036 (when N = 13), R =
0.849919, T = 0.0070495 (when N = 15), and R = 0.849816,
T = 0.0070556 (when & = 17). Clearly, the exact solution
is supportive of these representative results. At various other
albedos, it has been shown that accurate numerical results are
obtained. Additionally, no numerical instabilities emerged from
the computations required in arriving at any results reported in
this paper.

When w = 1, Lii and Ozisik [41] did not report any results
for the reflectivity and transmissivity and thus no basis of
comparison can be made with that study. However, the present
methodology has provided accurate results when @ = 1 as
verified by rigorous efror estimates and by physical trends
(i.e., w — 1) without any special modification to the analytic
procedure or computer code.

Being an exploratory investigation, some additional charac-
teristics associated with the approximation should be eluci-
dated. Some additional theoretic considerations can be devel-
oped from knowledge of the residual function, Ry(m). As
remarked earlier, an analytic expression for R,{7) can be devel-
oped, namely

Ry(m) = —f(m + ;aﬁ [Tm(n)

_Al, E’” Eryy (YT 57
2 = PERY

N Z (= 1Y*Eala(l + mTE(—1)

2 I {4.3)
o Ejala(l — mT (1)

- ,Z:‘) it ’

nel-1,1], >0, A>0,

which is valid for the three methods previously discussed.

Some clarification concerning the weighted-Galerkin method
must be made here. In order to perform all the integrations
analytically, the forcing function f*(7), which contained the
exponential integral function, E;(a(l + 7)), was expanded into
an equivalent Chebyshev series (see Appendix B). Thus, the
forcing function was approximated to some extent. Appendix
B contains some details on the errors associated with this ap-
proximation. The Ritz--Galerkin method did not suffer a similar
fate since the integration involving the forcing function, weight
function, and cocrdinate function could be performed without
approximation.

Figure 1 (a—d) present Gy(n) and Ry(x) for the three dis-
cussed methods {(b-collocation, c-Ritz—Galerkin, d-weighted-
Galerkin), where N = 7, &« = 1, and A = (.B. In Fig. 1b, the
collocation points were chosen in accordance to 7, =
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Residual, R.{(1)
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n

FIG. 1. The approximate solution, Gy{n)}, and residual plots, Ry(7), for
the methods of: (b) coliocation; (c) Ritz-Galerkin; and (d) weighted-Galerkin,
where N=7, =08 L=2(A=08 a=1).

cos(km/N), k=0, 1, ..., N. The oscillatory characteristic associ-
ated with the residual are somewhat similar to each other with
the exception of the obvious enforcement of Ry(1) = Ry(—1) =
0 by the collocation method. The effect of the Chebyshev
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weight function is also evident when comparing the Ritz- and
weighted-Galerkin methods near 1 = —1 and n = 1. These
approaches produced graphically identical Gy(7) results as dis-
played in Fig. 1a. Observe that the approximate solution Gy(7)
is bounded while the kernel shown in Eq. (2.1¢) is not.

It is clear from viewing Fig. 1b that the residuals for the
orthogonal collocation method at the endpoints are zero as
forced by construction using the collocation points defined by
a closed rule. Some numerical methods have indicated that
large errors take place at the endpoints in G{#). However, the
orthogonal collocation method offered here (and also clearly
demonstrated by Frankel [42]) illustrates that excellent numeri-
cal results can be achieved at these locations. Clearly, the
residual plots offer some insight into this phenomenon.

From the residual plots, the collocation method appears to
produce comparable results to that of the Galerkin methods.
Realizing the extensive amount of arithmetic associated with
Galerkin methods due to multiple integrals, it appears that the
collocation method represents an economical and accurate Nth-
order approximation to G(n). Computer times for calculating
the expansion coeffictents for the orthogonal collocation, Ritz—
Galerkin, and weighted-Galerkin methods when N = 6 were
18 s, 48 s, and 3380 s, respectively. It should be remarked that
the individually prepared codes where not optimized for speed.
The last approach is clearly excessive, owing to the numerous
analytic manipulations required as described in Appendix B,
The numerical implementation offered by Spiga and Spiga [24]
appears to be advantageous over the present weighted-Galerkin
method in terms of speed although no quantitative run times
were reported in [24]. Doubling N approximately squares the
CPU time required for calculating the expansion coefficients.
Most of the CPU time used in a single run for small N was
attributed to calculating the nortns of the various functions and
kernels required in arriving at rigorous error estimates.

Total memory requirements for a complete simulation which
involves the determination of the expansion coefficients, recon-
struction of the solution, and other important physical parame-
ters, error analysis, and graphical outputs for the collocation
method when N = 6 was 1.28 Mbytes while for N = 12 the
memory requirement was 2.03 Mbytes. Clearly these require-
ments are reasonable. Increasing N for the collocation method
does not require excessive amounts of memory. The Galerkin
methods require additional memory of approximately 1 Mbyte.
These requirements are rather flexible, since they depend on
how one writes the computer code.,

As alluded to earlier, the unknown expansion coefficients
{af}¥_; are found by solving a system of coupled linear alge-
braic equations by matrix means. Owing to the obvious coupling
among the coefficients, the effect of & on the accuracy of
must also be considered. Table III illustrates the effect of the
number of terms retained in the collocation expansion on the
convergence of the expansion coefficients when a@ = 1 and
A = 0.8. Clearly, the dominant terms are converging as N grows.

With regard to Tables IV and V, both the Ritz—Galerkin
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TABLE III

Convergence of the Collocation Expansion Coefficients whenw = 08, L=2(A =08, a= 1)

af N=13 N=5 N=7 N=9 N=11 N =13
af 4.00079 3.97947 3.97582 3.97469 3.97424 3.97402
al —1.58873 ~3.50197 —3.49001 —3.48776 —3.48652 —3.48593
af 0.823741 0732223 0.722387 0.719784 0.718793 0.718333
af —2.242179 —0.257857 ~0.239203 —0.235060 —0.233589 ~0.232929
al 0.0976552 0.0774224 0.073513 0.0722306 0.0716811
al ~0.0490953 —0.0575897 —0.0505265 ~0.0484691 —0.0476382
al 0.0318984 0.0245541 00226228 0.0218504
al —0.0185276 —0.0233762 —0.0200245 —0.0188587
al 0.0145546 0.0112132 0.0101349
a —0.00890106 — 00118907 ~0.0100779
al 0.0078602 0.00611486
at —0.00493661 —0.00690141
al} 0.00472646
al} ~0.00301481
R 0.332869 0328332 0.328015 0.327968 0327957 0.327954
T 0.195848 0.197152 0.197253 0.197266 0.197268 0.197269
[ 0.668451 0.283302 0.153469 0.0954606 0.0648849 0.0468881
€l 0.126754 0.0537207 0.0291013 0.0181016 0.0123037 0.0088511

and weighted-Galerkin methods produce similar convergence
trends on the expansion coetficients as compared with the collo-
cation method. Tables [l through V also present the resulting
numerical values for the reflectivity R and transmissivity T
using a finite Chebyshev series representation for the unknown
function, G(7). From viewing Tables [II through V, it is clear
that as N grows, accurate numerical results for these two surface
properties are being generated. From Table I, the exact values

TABLE IV

Convergence of the Ritz-Galerkin Expansion Coefficients when
w=08L=2{(A=08,a=1)

corresponding to Tables HI-V for R and T are 0.03280 and
0.01973, respectively. It appears that four places of accuracy
can be quickly obtained for both R and T, even though the
expansion coefficients have not converged to a comparable
number of places for small N. Some care should be exercised
when using Gy(7) when N is small.

At this point, it is instructive to define the infinity norm of
a function as

TABLE V

Convergence of the Weighted-Galerkin Expansion Coefficients
whenw =08, L=2(A=08, a0 = 1)

N=3 N=35 N=7 N=9 N=3 N=35 N=7 N=9
al 3.95562 3.96844 3.97149 3.97259 af) 3.97928 3.97458 3.97395 3.97379
alf ~3.46102 —3.47630 —3.48095 —3.48267 alf —3.48853 —~3.48579 —3.48529 —3.48514
af 0.677921 0.706724 0.713145 0715377 a¥ 0.728443 0.718416 0.717832 0.717713
al —0.204947 —0.222733 —0.227736 ~{).229558 a¥ —0.236790 —0,232418 —0.232099 —0.232027
aff 0.0584488 0.0661107 0.0685639  af 0.0725636 0.0710985 0.0709772
af —00359040  —0.04201t1 —0.0440163  af - 00476729 —0.0466072 —0.0466069
a 0.0154309 0.0184535  af 0.0214933 0.0210767
a¥ —0.0122815  —-0.0147768  af —0.0179622 —0.0176301
af 0.00607399  af 0.00024411
al —0.00501322  af ~0,00861693
R 0.3278841 03279440 03279493 03279502 R 0.329405 0.328196 0.328024 0.327979
T 0.1972424 0.1972684 0.1972666 01972697 T 0.197923 0.197342 0.197286 0.197275
[F& 1% 0.960897 0.44594 0.258666 0.171938 lréxfi¥ 0.551802 0.259727 0.145653 0.092896
&, 1% 0.182209 0.0845608 0.0490492 0.0326035 [€xlla 0.112222 0.0492504 0.0276193 0.0176153
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TABLE VI
Error Bounds (L.-norm) for the Collocation Method when
w=08L=20A=08a=1

N &l Il IFéll
1 0.5373 2.17 2.834
2 02513 0.71 1.325
3 0.1268 0.28 0.6685
4 0.08079 0.16 0.4261
5 0.05372 0.0987 0.2833
6 0.0391 0.069 0.2063
7 0.02913 0.051 0.1535
8 £.02280 0.039 0.1202
9 0.01810 0.09546
10 0.01486 0.07835
11 0.01230 0.06489
12 0.01043 0.05498
13 0.008891 0.04689

1ol = Sup [O(]. (4.52)

Correspondingly, the infinity norm of the integral operator ¥
is {7, p. 14]

%) = sup [\ [Keln—ghlde  @5b)
gel-1.1] J £=-1

and where the infinity norm of the residual function becomes

IR = Sup |Ry(m}]. (4.5¢)
n=[— 1]

Observe that, for this physical problem, the Galerkin methods
produce their extremal at = —1, unlike the collocation method
where the extremal of Ry(m) is located in the interior of the
physical domain. Thus, when calculating the L.-norm of the
residual for the collocation method, some additional numerical/
symbolic analysis is performed in order to locate the corre-
sponding extremal.

A rigorous L-error bound |[€]l.. for Gy(n) is available from
Eq. (3.8). For the three methods, the error bounds are also
presented in Tables III through V. The upper-error bound has
the superscript U while the lower-error bound has the super-
script L. It is clear from viewing Tables III through V that there
is more error in Gy(n) for fixed N than is realized in either R
orT.

For comparison purposes, a simple numeric solution for solv-
ing the weakly singular Fredholm integral equation for the local
error €x(7), shown in Eq. (3.7), has been carried out using the
residual generated by the collocation method when o = 1 and
A = 0.8. Table VI presents the discrete L.-error as obtained
by direct numerical simulation for this illustrative case. These
numerical results were obtained by solving the weakly singular
Fredholm integral equation of the second kind shown in Eq.

JAY 1. FRANKEL

(3.7, using singularity subtraction and trapezoidal integration
[4]. Here, the numerically obtained L. norm of €,(n) dencied
by |[€x]% (superscripted with an “‘n”” for numerical) is con-
trasted to the upper and lower bounds as developed by Eq.
(3.8). It is interesting to note that the error tends toward the
lower bound for this case rather rapidly. Using the results shown
in column 4 for the nomerically obtained L.-error from the
integral equation, we can extract useful information concerning
the convergence rate of the method. The convergence rate asso-
ciated with a solution method is a crucial factor in determining
the success of the method. The information presented in Table
V1 permits empirical interpretation toward estimating the con-
vergence rate. Examination of column 3 in Table VI circumstan-
tially indicates that the convergence rate can be approximated
by the expression

[Fén] = [Fli = 01Nz, (4.6)
where N is the order of the expansion. In Appendix C, a pessi-
mistic estimate is developed based on a projection method [7,
34, 40, 41]. This approach produces

[6xll = On(N)/N"), @7
where G € C'[—1, 1] Note that our observational skill relied
on fairly low values of N, while the estimate developed in
Appendix C required N sufficiently large (greater than our
observational data). In general, a viable expansion technique
should have rapid convergence,

Finally, Table VII demonstrates the influence of the parame-
ters L, @ on the upper and lower L..-error bounds as the nomber
of terms in the Chebyshev series is increased. As the optical
thickness increases and the single-scattering albedo decreases,
the bounds appear to be tightening (although apparently large
in magnitude) rapidly as N increases.

5. CONCLUSIONS

Several expansion methods have been implemented for solv-
ing the equation of radiative transfer in an isotropically scatter-
ing, absorbing, and potentially emitting media, using Chebys-
hev polynomials of the first kind as the basis functions. The
practical analytical/computational procedure offered here was
assisted by the implementation of symbolic computation in
determining the expansion coefficients. Symbolic manipulation
was effective in assisting the development of some of the error
analysis presentation within. The collocation technique using
this choice of basis augmented by symbolic compatation offers
an easy and obvious generalization to situations involving ani-
sotropic scatter [4, 5] and spatially varying albedos [22, 43] in
both plane-parallel and spherical geometries [43]. The rate of
convergence for the series representation offered by the orthog-
onal collocation method is deemed moderate. The collocation
method appears especially noteworthy with regard to flexability
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TABLE VII
Error Bounds (L.-norm) for Several Optical Thicknesses, L,
and Albedos, w
N L w I&all% IiEalle
5 0.1 08 0.00530256 0.00699654
1 0.8 0.0317676 0.105959
10 0.8 0.186451 1.67066
5 0.1 0.2 0.00981479 0.0105148
1 6.2 0.088425 0.115948
10 0.2 0.786421 1.17914
7 0.1 0.8 0.00279293 0.00368517
1 0.8 0.0169(38 0056388
10 0.8 0.111123 0.995692
7 0.1 0.2 0.00505042 0.00541063
1 02 0.0456048 0.0597997
10 0.2 0.414734 0.621843
9 G.1 18 0.0025158 (.00331951
1 0.8 0.0104246 0.0347706
10 0.8 0.0734615 (0.658237
9 0.1 0.2 0.00410602 (.00439887
1 0.2 0.0277234 0.0363525
] 02 0.254447 0.381513

as noted by Frankel [44] when investigating transient, radiative-
conductive transport in a participating medium.

LaClair and Frankel [45] extended the present work to in-
clude a linear anisotropic scattering phase function. Novel error
estimates were also obtained exiending the procedure offered
here to two coupled, weakly singular, Fredholm integral equa-
tions of the second kind. Again, symbolic computation was
called vpon for performing numerous and often tedious analytic
manipulations. Numerical studies investigating combined-
mode heat transfer using a generalization of the method of
Kumar and Sloan [45] as demonstrated in [44], and haghly
anisotropic radiative transport, such as in coal-fired combustion
[47], are tractable via collocation.

In closing, the accuracy of a numerical method for the radia-
tive equation of transfer based on R and T comparisons should
be carefully examingd. In many practical applications, the actual
spatial distribution of the intensity or the zeroth (or first) mo-
ment of the intensity appear crucial, owing to coupling to an-
other dependent variable such as temperature. A clear error
estimate (or bounds) on the unknown function(s) certainly
serves to permit a proper evaluation of accuracy.

APPENDIX A

Explicit expressions for the constants displayed in Egs.
(3.12b)(3.12d) are
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0, m, k mixed odd/even,
Amk = 1 l
Ltk 1 i both m, k even or odd,
(A
and
M m
o Es () 1 . 1
m=2§—aﬁrnngmﬂWmdn+§am
k
o 1 ;
o (1)
= TP DEw O] = THO) 2 — [T()E;:40)

- TE:)(_ 1 )En+j+3(2a)]}!

where M = int[m/2] and where the integral term is express-
ible as

m=2j

[ @ dn= 3 cun [ T T dn
’ (AD)

m—2j

= 2, G
n=0

for evaluation purposes. Symbolic software packages such as
Mathematica™ or Maple permit the rapid evaluation of the
constants ¢, as needed when expressing T99(7) in terms of
a finite Chebyshev sum. Maple has a function already prepared
{or doing this operation. This tedious procedure can be done
by hand by initiating the process [28]

T = mU,_i(m)
m—1z2
ml:l +2 > ’l}(n)], m odd,

J=24,.

m=1z1
m {2 2 T}(n)], meven,

J=13,..

m=1=2 i-1=1
Zm[ > @) Y, Ta(n)], m odd,
J=24,. =13
T = . -
2’”[ > @) [5"‘ > Tk(n):l], meven,
=13, (=



TH(n)
m=1=z2 j-1z=1 | A=
2m[ iy 2, @ |5+ Tn(n)ﬂ, m odd,
=24, k=13, 2 A iTh.
= m—1=1 j—1=2 E—1=1
2m|: > (2) (2k) Tﬂ(n)}, meven,
=13 k=24 n=13

m =0, 1, .., where U,(n) is the nth Chebyshev polynomial of
the second kind [28}. Clearly, a pattern is developing but sym-
bolic manipulation appears to be more prudent and better suited
to such computation than the author. Finally,

&
1
fi=-2nm 2{] ) [E3es20)T(1) — E5p ol OTM(— 1)),
"= (A4)
k=0,1,..

APPENDIX B

~ In this appendix, we briefly describe the approximation of
the second exponential integral function in terms of a Cheby-
shev series representation. Consider [11]

Efa(l + m) = a(l + p)In(1 + 7)

- (B.1)
- ,Zo"%“ +f mel(-1,1],

where

Bi=-1

Bt = ol —y — In{a))
o _(Ca)f
a7

Assuming that Exw(1 + 7)) can be expressed as

Ea(l +m) = X vil,(m, nE€(-L1]. (B.2a)
where
(o Lp Eedtwnm,
v'”_Nm,,,jF-] m dn, m=0,1,.., (B.2b

where the normalization integral, N,, is defined in Eq. (3.17).
Making use of [28]
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TABLE VIII

Relative Error of E)cl + %)) as a Function of the Terims
Retained in the Finite Chebyshev Expansion (a = 1)

n 151‘ |59l |5:1I
-1 1.78971 1.11111 0.737576
—0.8 1,02045 0.302367 0.230138
—0.6 .395868 0.48912 0.301628
-4 1.23546 0721127 0.229332
—{2 1.0343 0.229182 0.05697277

0 1.79653 0(.873624 0.486842

0.2 1.4602 1.12263 0.746734

0.4 2.77448 191536 0.613317

0.6 2.73703 1.74141 0.30272

0.8 2.16854 246278 0.563874

1.0 4.24428 3.03923 . 1.74353

Tu(T(n) = HTpe(n) + Tiy()] (B.3)
and noting that [38, p. 218]
L Tk(f)l“!”? - 'fl
h(m =] Vi—g dé
—gln(2), k=0, (B4
={_hm
k 3 k - ]s
we arrive at
ey o [t Tul(+ )
vamm k2=0 ﬁt Jn=—l ,'—1 — le d
{(B.5)

o
m=01,...
The evaluation of the remaining integral in (B.5) for each fixed

m is performed analytically with the aid of Mathematica™.
Table VIII presents the relative error, as defined by

Exa(l + 7)) =2 viT,(m)
Exall + )

|5~| =

Clearly, even at N = 11 (ie., with 12 terms in the series
representation) a fair amount of error persists, Thus, it appears
that a direct numerical approximation for

j% f“(ﬂ)Tk('n)d

, k=0,1,..
== V]_TIZ K

N,

is preferable.



CHEBYSHEV SOLUTIONS FOR THE TRANSPORT EQUATION

APPENDIX C

A brief discussion concerning the rate of convergence associ-
ated with the approximate solution based on the collocation
method using the closed-rule collocation points previously de-
scribed is now presented. The results obtained in this appendix
are intended to clarify the observed convergence rate conjec-
tured by Eq. (4.6). Our approach relies on the projection method
framework described by Atkinson (7], Baker [48], and others
{38]. We refer the reader to these fine sources for the particulars.

Let G € C'[—1, 1}, N = r, and let the points n, € {1, 1]
be given by #, = cos[kn/N], &k = 0, 1, ..., N. Define the
interpolatory projection operator Fy such that

N
Pyh = Zuzm(n)h(nm), (C.1a)

where h(7) is a real function such that £ € C7[—1, 1] and
where 1,(n) is the Lagrange interpolation polynomial [49, 50]

N f—
L(m = H Mg m=0,1,...N. (C.1b)
(7 — i
=0T m) T = T

For implementation purposes, we express Eq. (C.1b) as

zm(n)=§@(;(ﬂ?"—)_@, nel-1L1l, (€l

where
Q) = !i(n -~ (C.1d)
Viny = ﬁ (0 — M. (C.1e)

k=0 Em)

Let us also define sy such that it is a polynomial of degree
=N. The linear operator P, has the property [7]

Pysy = sy, (C.2a)}

from which we can derive the idempotent property {7]

Py =Py; {C.2b)
also note that || Py|l. = 1 for N = 1. Let the previously defined
collocation points also represent the interpolatory points. Also,
note that i, k = (0, 1, ..., N, are real, distinct, and symmetric
around 13 = 0. For large N, the points are more dense around
the endpoints than toward the center of the interval n €
[—1, 1]. With this in mind, it is clear from its construction that
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PyRy(m) = ; Ry(nl(m) =0 (C.3a)

and

PuRy(M) = 2 Re(m)li(na) = 2, Ru(m) 8. =0,  (C.3b)
k=0 =0

where 8., is the Kronecker delta function and Ry(%) is the local
residual function defined in Eq. (3.3) and explicitly expressed
in Eq. (4.3). Recall that Eq. (3.3) and Eq. (2.1a), respectively,
in their corresponding operator form as

Ry = GN _fﬂ - %%G‘M, (C.4a)

0=G-—f*— %%G, {C.4b)
where we assume that A/2 is a regular value of ¥. Operating

on Eqgs. (C.4a—C 4b) with Py and noting that Gy is  polynomial
of degree N, we find that

0= GN - PNfﬂ - %PN?T{GN, (CSH)

0= PyG — Pyf — %PN?I{G. (C.5b)

Adding and subtracting G from Eq. (C.5b) and then taking the
difference between Eqs. (C.5a) and (C.5b} yields '

(1 . %Pﬁ{) (G — Gy) = G — PyG,

or

-
G-Gy= (I - APN?M) (G — PyG),

> (C.6)

where

%im 12K — Hl.. = 0

than for sufficiently large N, ({ — (A/2)P,¥) ™' exists [7]. Taking
the infinity norm of Eq. (C.6) produces

{G — PyG)

2

16~ = | (-2 n)

or

1

— - —_—
6 =Gl = TGy

G = PyGlla. (€D
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Introducing the best uniform approximation [40] yy (a polyno-
mial of degree <N}, we find that

|

G- Gyllos————
I il =1 (A12))| Py

NG = yu + vy — PuG)-

but, since vy = Pyyw, we find that

|G = Gull- = 011 +1PllIG - yull-). (C.9

From Baker [48, p. 93], one can show that
IG — wll- = OCIN").

These results came about from the use of a Jackson theorem
(48]. Before proceeding, a digression is warranted.

Rivlin [49] and others have investigated a case similar to
the present study, except that they considered an open-rule
set of Chebyshev collocation points. The values of || PylJ% for
N > 0 with collocations points defined by #f =
cos[(Zj — m/2N],j=1, ..., N, has been analytically developed
in several sources [48, 49]. Rivlin [49, pp. 93-97] showed that

N
= 2o <imen s a0

where A} is the Lebesgue constant which has at most logarith-
mic growth. Conforming to our notation, let

[Pyl = sln(N) + 4.

(C.10b)

Rivlin [49, p. 93] remarks that the proof of this result is *‘rather
long.”” In fact, Baker [48, p. 94] adds that this result is ‘‘pessi-
mistic.”” Baker [48, p. 94] further remarks that for N << 1000,

» < 5.4. (Note that a typographical error exists in his result
for A} on p. 94.) Baker [48, p. [04] does indicate that the
closed-rule collocation points should produce a similar relation
as indicated in Eq. (C. 10a) although the constants involved
would be different.

Owing to the numerous applications of the triangle inequal-
ity, an empirical approach for bounding || Px|. appears quite
reasonable. With these remarks in mind, a contemporary ap-
proach representing a compromise between theory and practice
15 offered with the aid of symbolic manipulation. One can
empirically demonstrate, to a high degree of confidence and
accuracy, that

[ Pull» = A (N} + B, (C.11}

for sufficiently large N. This is graphically demonstrated in
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FIG. 2. Symbolically calcutated relation indicating functional dependence
of || Py|l- on N with interpolatory points defined by w, = cos(kw/N], k = 0,
L, .. N

Fig. 2. The approximate numerical values for A and B agree
well with Ref. [28, p. 13]. Figure 2 presents a semilog graph
which indicates a straightline for sufficiently large N. Numerical
results for this figure were generated using the definition of
|Pull- based on Egs. (C.lc)—(C.le) and implemented using
Mathematica™.

Thus, it appears that from our theoretical development that

[wlle = IG —Gall- = OQnNYNT), (C.12)
These results indicate that rapid convergence will occur if G(7)
is sufficiently smooth. This result appears to have direct bearing
on regularity of the unknown function G{#). The reported dis-
crepency between Eq. (C.12) and Eq. (4.6} could come about
due to (i) the conjecture for extracting Eq. (4.6) is based on
N < 9 (not sufficiently large) and (ii) Eq. (C.12) is a pessimistic
result due to the bounding processes involved.

In the general anisotropic case, or in situations involving
mixed-mode, nonlinear heat transfer, this type of analysis ap-
pears quite formidable although in some cases it does appear
possible.
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